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Microscopic theory of second-order Raman scattering in silicon under uniaxial stress
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A microscopic calculation of the second-order Raman-scattering efficiency of silicon, with special
emphasis on the effects of uniaxial stress, is presented. Employing diagrammatic perturbation
theory, the scattering efficiency is obtained for incident- and scattered-photon energies either on or
off resonance. A numerical evaluation employs realistic models for the electronic band structure
and phonon spectra, and sums over all two-, three-, and four-band scattering channels. The scatter-
ing efficiency is normalized by the integrated first-order efficiency, and the results of the calculation
are quantitatively compared with experimental data for second-order Raman scattering in crystal-
line silicon under [001] stress, taken with an incident laser energy of 2.34 eV.

I. INTRODUCTION

Raman scattering of light is one of the most powerful
methods for studying various types of elementary excita-
tions in solids. ' Here we consider vibrational Raman
scattering which involves inelastic light scattering by a
crystal due to the modulation of the crystal polarizability
by phonons. A great deal of theoretical effort has been
invested in the development of a description of the
scattering processes. ' Microscopic calculations em-
ploy perturbation theroy to formulate expressions for the
scattering cross section; however, the complexity of these
expressions, especially for higher-order scattering, makes
their evaluation difficult. Thus, for physical insight and
for comparison with experiment, phenomenological
theories have often been employed. These theories in-
volve the expansion of the dielectric function as a func-
tion of phonon coordinates. The scattered light intensity
for a given number of phonon absorptions and/or emis-
sions is then obtained from the corresponding term in the
expansion. These terms are often treated as parameters
adjusted to fit experimental data, ' rather than being ob-
tained from the microscopic evaluation of the derivatives
of the dielectric function.

Here we derive a microscopic theory and present the
results of the calculation of the second-order Raman
spectra of crystalline Si under uniaxial stress. In contrast
with earlier calculations of resonant (i.e., the laser or
scattered frequency is near an optically strong interband
transition) spectra, our results are valid for photon fre-
quencies either on or off resonance. We employ realistic
models for the electronic band structure and the phonon
spectra, and sum over all possible scattering channels (up
to four-band terms); these are also improvements over
most earlier approaches. As a consequence of the large
number of scattering channels and the need to perform
two nested Brillouin-zone sums (one for the wave vector
of the electron or hole, the other for the wave vector of
one of the involved phonons), the numerical calculations

II. THEORY

The microscopic theory of Raman scattering was first
formulated by Born and Huang and Loudon, and for-
malized by Gauguly and Birman. Our calculation is
most similar to that of Klein' who obtained expressions
for the second-order Raman-scattering efficiency in tran-
sition metals and compounds through an application of
the theory of Kawabata. Here, we have tailored
Kawabata s theory towards applicability in semiconduc-
tors.

The scattering probability per unit path length, per
unit scattering frequency, and per unit solid angle (the
scattering efficiency) for second-order scattering is given
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are rather lengthy. Our work serves as a generalization
of an earlier calculation of the resonant second-order Ra-
man spectra of unstrained semiconductors. '

A number of experiments have examined the effects of
uniaxial stress on resonant Raman spectra. " ' Recent
data for uniaxially stressed silicon with which our calcu-
lations are compared were obtained off resonance' with
an incident laser energy of 2.34 eV. Off-resonance mea-
surements probe deeper into the sample than on-
resonance measurements, and therefore are less affected
by surface effects. For example, the surface strain may be
different from the strain in the bulk. The consideration
of the effects of uniaxial stress also stems from recent in-
terest in strained layer Si/Ge superlattices. ' '

In Sec. II expressions are obtained for the second-order
Raman-scattering efficiency and its normalization with
respect to the integrated first-order efficiency. Section III
discusses the methods employed to numerically evaluate
these expressions. A comparison with experimental data
for Si takes place in Sec. IV, and conclusions are drawn
in Sec. V.
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where coEE (the Raman shift) is the difference between the
incident coL and scattered co& frequencies, c is the speed
of light in vacuum, and eL z are the photon polarization
vectors for incident and scattered light. The tensor I'&

&

for second-order Stokes-Stokes scattering in the one-
electron approximation may be expressed in terms of the
second-order Raman tensor a
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X[n(coO )+1][n (a)O, )+1], (2.2)
+ 35 other terms

where N is the number of primitive cells in the sample, Q
is the wave vector of one of the phonons (momentum
conservation requires that the other phonon has momen-
tum —Q), j is the phonon branch index, and

n (coO ) =[exp()rEcoq /kEE T) —1]
(h)

+ 35 other terms

+ 35 other terms

is the Bose function. In tetrahedral semiconductors the
Stokes —anti-Stokes contributions (difference processes)
are weak in the spectral range of interest, and may be
neglected.

The contributions to the second-order Raman tensor
are most easily found with the aid of Feynman diagrams
(Fig. 1). Figures 1(a) and 1(b) describe the hole or elec-
tron emitting two phonons with an interaction vertex
determined by the intrinsic electron —two-phonon in-
teraction. Figures 1(c)—1(e) describe the phonon emis-
sions through the electron —one-phonon interaction taken
to second order. Figures 1(f)—1(i) describe iterated first-
order events with an intermediate state consisting of a
virtual photon. The diagrams may be grouped into reso-
nant and nonresonant types; the (non)resonant diagrams
are characterized by the scattered photon being emitted
(before) after the incident photon is absorbed. It would
be a tedious task to evaluate all the diagrams in Fig. 1;
fortunately many can be shown to be negligible. The dia-
grams corresponding to iterated first-order events
[1(f)—1(i)] have a scattering efficiency comparable to the
first-order scattering eKciency squared and thus may be
neglected. We find that for purposes of comparing with
the experimental data for Si obtained with AcoL =2.34 eV
(see Sec. IV), the contributions of the nonresonant terms
may be neglected. For lower coL's the contributions of
the nonresonant terms will become significant. For the
case of resonant Raman scattering considered in Ref. 10,
four diagrams [Fig. 1(a)—1(d)] dominate the scattering.
For the more general off-resonance case considered here
42 diagrams give significant contributions and thus need
to be taken into account, neglecting the nonresonant and
iterated first-order diagrams.

The diagrams were evaluated using Matsubara thermal
Green's functions. ' We illustrate the technique by cal-
culating the contribution of Fig. 1(d) to the Raman ten-
sor. The following complex boson frequencies are insert-
ed into the electron loop: at the incident photon vertex,
irido which will later be analytically continued to coL+ig',
at the first phonon vertex, ice which will be analytically
continued to co, at the second phonon vertex, icu&

which will be analytically continued to co . =co, and

+ 35 other terms

FIG. 1. Feynman diagrams describing processes contributing
to second-order Raman scattering. The incident photon (left
dashed line) creates a virtual electron-hole pair (solid loop).
The electron and/or hole may emit phonons (wavy lines) before
the electron-hole pair recombines and emits the scattered pho-
ton. In (f)—(i), there exists an intermediate state consisting of a
virtual photon. The other terms which are not drawn are ob-
tained by permuting the vertices of the drawn diagrams.

M g G (kv, ice„)G (kc, iso„+i~0)
k, v, c,c', c" i'„

X G (k+Qc', i Eo„+icoo ice~ )—,

XG (kC, ECO„+EELEO ECO& ECO& ),

where M denotes the matrix elements

(2.3a)

M =
& kU

I ~, —„Ikc & & kc I H, — Ik+ Qc' &

x & k+Qc'IH, —~
Ikc" & & kc"III, , IkU &—(2.3b)

the fermion Matsubara Green's function is

G (km, ice„)= .
1

l&~
(2.3c)

ek denotes the energy of electronic state m with
momentum k relative to the Fermi energy, H, „ is the
electron-photon interaction vertex, and H, I, is the
electron —one-phonon interaction vertex. Evaluating the
frequency summation gives

at the scattered photon vertex ice, which will be analyti-
cally continued to co, . Each frequency is an integral mul-
tiple of 27r/p, where I3=1/kEET. Then the contribution
of the fermion propagators in diagram 1(d) is
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f (Ek, )
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(Ek, )+ (2.4)
(Ekc l COp+ l CO + l CO& Eku )(E''kc +l CO + l CO Ekc )(Ekc ~ + l CO Ek+qc )

where the Fermi function is f (E)=1/(e~'+1), and the zero of the energy scale was chosen to be the Fermi energy.
Our calculation differs from that for metals ' since the gap in nondegenerate semiconductors implies that it is a good
approximation to assume that in the initial state all valence-band states are occupied and all conduction-band states are
unoccupied. Then the final three terms in (2.4) can be neglected. Employing the H, „and H, h of Ref. 20, treating
the boson propagators as in Refs. 7 and 17, and performing the analytic continuations on the boson frequencies gives
the contribution of diagram 1(d) to the Raman tensor as given below.

The contributions of the most resonant terms of each of the three types (hole emitting two phonons, electron emitting
two phonons, and electron and hole each emitting a phonon) are given in the following expression for the Raman ten-
sor. For brevity the other terms are not written here although they are included in the calculation described in the fol-
lowing sections. The second-order Raman tensor may be written as

a'&(Qjj')= — g (y &(ku, kc, ku', kc')[5, , blq''(ku, ku', kc)+5, , bq)j (kc', kc, ku)]~ - =2
kuv cc

—g~&(kv, kc, k+ Qv', k+ Qc')b
IC,"'(kc,kc', ku, kv ')

I +
where the ellipsis represents 37 other terms, and where

b, ' (kv, ku ', kc)

(2.5a)

K, K, tel

1/2
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4M„M ~

(2.5b)
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X

~~L Ekc Ekm l 9)(~~L Ekc+Eku+l 9)(~~L Ekc+ ku'+l 9)

corresponds to the hole-emitting two phonons (and is closely related to the electron —two-phonon deformation poten-
tial, see Ref. 10); b Q '(kc', kc, ku) (corresponding to the electron-emitting two phonons) is the same as (2.5b) with the
replacements v~c', v' —+c, c~v, except for the replacement of the first-energy denominator in the Grst term with

(ECOL + Ek,
—Ek+ q fico ) and the —replacement of the first-energy denominator in the second term with

(a~L+E„„—E„):
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which corresponds to the electorn and hole each emitting
a phonon, and

y p(ku, kc, k'v', k'c')

plotted. Experimental data measured in arbitrary units
can be similarly normalized and thus quantitatively com-
pared with theory.

~k'c' 6k'v' ~kc ~ku

&k'v'Ip Ik'c'& &kclpplkv &

(2.5d) III. NUMERICAL PROCEDURE

~ p,s(~z)
(

(1))2
yz

(2.6)

is the electronic susceptibility. Here, M is the mass of
atom v in the basis, e„(Q,j,v) is the pth component of a
phonon polarization vector, R„(v) is the coordinate of
atom ~ of the basis with respect to a chosen zero, w is the
coordinate of atom a with respect to the center of the
bond between the two basis atoms, p are the com-
ponents of the momentum operator, e is the electron's
charge and m its free mass, and Vo is the volume of a
primitive cell.

To simplify the calculation, the self-energies of the
electrons, holes, and phonons have not been included. As
discussed in the next section, g is treated as a small fixed
parameter to produce Lorentzian broadening.

In deriving (2.5), the condition of translational invari-
ance has been used to rewrite the matrix elements of the
second-order electron-phonon interaction in terms of
products of matrix elements of the first-order electron-
phonon interaction. This allows one to combine dia-
grams 1(a) and l(c), and 1(b) and 1(d) into two diagrams
each with a renormalized electron —two-phonon vertex
such as given in (2.5b).

In addition to the two Bose factors in (2.2), weak-
temperature dependence also enters from band-gap renor-
malization and the temperature dependence of the pho-
non energies, but is neglected here. Experimentally, the
product of Bose factors accurately accounts for the tem-
perature dependence, ' except near resonance. Exci-
tonic effects may be neglected in Si, the material to which
the theory will be applied, due to its large static dielectric
constant. Only deformation-potential electron-phonon
interactions are considered since in Si there are neither
piezoelectric nor Frohlich couplings.

In order to make a quantitative comparison with ex-
perimental data (which are usually measured in arbitrary
units), the 12 diagrams [isomorphic to Pigs. 1(a) and 1(b)
with the electron —two-phonon vertex replaced by an
electron —one-phonon vertex] contributing to the first-
order Raman tensor a", '(j) were also evaluated, and the
normalized scattering tensor

iupys(~R )

f & la,'."(j)l'[& (~0, )+1]&(~g ~oi )d~R
l

In this section we discuss the evaluation of the expres-
sions obtained in Sec. II for application to crystalline sil-
icon under no and under [001] stress.

The electronic structure was obtained from local
empirical pseudopotentials with a basis of 89 plane
waves. Spin-orbit splitting in Si cannot be resolved and
thus is not included in the calculation. The pseudopoten-
tial form factors V(Q) for Q equal to reciprocal-lattice
vectors were obtained from Cohen and Bergstresser. In
the evaluation of the electron-phonon matrix elements,
the rigid-pseudoion model was employed; that is, each
atom was assumed to have a local pseudopotential which
rigidly moves with the atom as it is displaced by the pho-
non. In order to evaluate the electron-phonon matrix ele-
ments V(Q) is needed for arbitrary value of Q. Thus a
smooth interpolation was performed between the Cohen
and Bergstresser values, with an upper cutoff at
Q =12(2~/a), where a is the lattice spacing, and a
lower limit of V(0) = ', EF, where—E—F is the Fermi ener-

gy of an electron gas of the same density as the valence
electrons. As shown in Ref. 10, this choice of V(0) gives
spectra which differ slightly from those obtained from the
choice V(0) =0. For a discussion concerning appropri-
ate interpolations and screenings of pseudopotential form
factors, see Ref. 20.

Phonon frequencies and eigenvectors were obtained us-

ing Weber's bond-charge model parametrization. Ex-
perimental determination of certain phonon eigenfre-
quencies and eigenvectors indicates that the bond-charge
model is among the best phonon models for Si.

A Lorentzian broadening of q =0.1 eV is used
throughout the calculation in order to take into account
the lifetime broadening of the electronic states as well as
to smooth out Auctuations arising from the finite mesh
size employed in the Brillouin-zone integrations. The re-
sults are insensitive to the exact choice of this parameter.
For the case of an unstressed tetrahedral semiconductor,
the Q summation was performed over 28 points in an ir-
reducible 1/48 wedge in the Brillouin zone employing the
tetrahedron method. The k summation was performed
over 480 special points in the entire Brillouin zone.

The effects of uniaxial stress on the electronic structure
are taken into account through the multiplication of all
real-space vectors by 1 —e &, where e & is the strain ten-
sor, and the multiplication of all reciprocal-lattice vectors
by 1 —e p=(1+e p) '. This treatment is exact for [001]
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FIG. 4. The calculated relative second-order scattering
efficiency for Si under no stress. The dashed line gives the
scattering intensity when the propagation direction of the pho-
nons is restricted to be approximately parallel to z, whereas the
other two curves correspond to phonon propagation roughly in
the y or x directions.

configuration, its existence (at about frcoz =67 meV) in
the other configurations of the experimental data is a
consequence of small misalignments in the setup. These
misalignments are rejected in the difference between the
relative heights of the 2TA(X) and 2TO(L) peaks in the
experimentally determined I' ' and I,'„,' (by symmetry

(2) (2) (2) (2) (2 (2) (2) (2)
Ixxxx Iyyyy Izzzz ~ Ixyxy Ixzxz Iyzyz ~ and Ixxyy Ixxzz=I',', in the absence of stress; under [001] stress, the x
and y directions remain equivalent and the z splits off).

In Fig. 3 the same quantities as in Fig. 2 are plotted,
except the sample is now under 24 kbar [001] stress. The
most noticeable change with respect to the unstrained
case is an overall decrease of the I,'„,' scattering efficiency.

Iyzyz is a)so reduced somewhat but Iyyyy is unaffected by
the stress. These differences arise from the dipole matrix
elements (2.Sd). Under [001] stress, the z components of
the electronic wave functions are distorted, resulting in a
decrease of the z component of the dipole matrix ele-
ments; thus I,'„,' decreases. The experimental data also
show a slight downshift of the 2TA(X) peak and small
upshifts of the 2TO(L) and 2TO( 8') peaks, which are not
reproduced by the calculation since stress dependence of
the phonon frequencies was neglected.

As stated in Sec. III, the Q sum for the unstressed case
can be restricted to an irreducible —„wedge in the Bril-
louin zone. This is a correct simplification if the Raman
tensor has the full symmetry of the point group 0&. This

)( Pp5'

K3

X)

lg

~15

2

L3z

Kp

Xg

k=(0,0,0) k=(0,0,0)

FICx. 5. Electronic band structure of silicon (obtained from
Ref. 35).

approximation does not hold exactly, as can be seen from
Fig. 4. The figure (for unstressed Si) shows that, for ex-
ample, the I,'„', component for phonon wave vectors Q
"roughly" parallel to z differs from this component with

Q approximately parallel to y or x. Restricting Q to be
roughly parallel to z means limiting the choice of Q vec-
tors to belong to an irreducible —,', wedge of the Brillouin
zone which includes [001]. As a consequence, the results
plotted in Fig. 2 have been averaged over three —,', wedges
for Q roughly parallel to x, y, and z. In general, for Q in
a direction parallel to the polarization of the incident
photon, the phonon scatters differently than for Q in ei-
ther of the two orthogonal directions. As a specific ex-
ample, consider the two TA(X) phonons created by an in-
cident photon polarized in the z direction. If electrons
are excited to I iz conduction-band states (triply degen-
erate and spanned by states of symmetry type lx &, Iy &,
and lz & ) from the I 2s, valence-band maximum (see Fig.
S), then the lx & and Iy & states will be populated. Two
TA(X) phonons of symmetry [X3](z) with wave vector
along z will then give the electrons four significant
scattering channels ( x &

—+ lx &, lx & ~ Iy &, y &
—+ Ix &,

and Iy & ~ Iy & ), whereas the same phonons with Q paral-
lel to y or x permit only two scattering channels
( lx & ~ Ix & and ly & ~ Iy & ). Thus, as indicated in Fig. 4,
the 2TA(X) peak is enhanced for Qllz. Symmetry restric-
tions for general k are less stringent and thus the peak
heights do not differ by the factor of about 4 predicted by
this argument. On the other hand, the 2TO(L) and
2TA(L) peaks are independent of the direction of Q, a
consequence of the number of scattering channels being
equal in all three cases.

One of the purposes of the present work is to aid in the
interpretation of second-order Raman-scattering experi-
ments under uniaxial stress, in particular to help to ex-
tract phonon-deformation potentials (i.e., frequency split-
tings and shifts) from the data. For example, under a
[001] stress, the equivalent X points split into two, one set
along [001] (Xoo) ) and the other along [100] and [010]
(X,oo and Xo,o). Thus the stress will induce splittings in
addition to those in Fig. 4; in Fig. 6, the calculated spec-
tra are displayed for 24 kbar [001] stress. The figure indi-
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bE =(D, 1+D2[aaI ):e, (4.1)

where a is a unit vector in the direction of the wave vec-
tor of the electron or phonon, 1 is the unit tensor, [
denotes a dyadic product, and D, and D2 are constants.
Thus the L phonons will remain unsplit under [001]
stress, while the 8'points will split.

As an example of employing the weights of Figs. 4 and
6, we calculate some of the generalized mode Gruneisen
parameters of Si, employing also the experimental piezo-
electric Raman data. The generalized mode Gruneisen
parameters y&&(Q, j,m) for a branch j phonon polarized

cates that for the TA phonons at X with photon polariza-
tions along the stress axes and parallel to each other
(I„„)one should observe mainly the Xoo, . For photons
polarized perpendicular to the stress and parallel to each
other (I and I~~~~ ) one observes mainly X,oo and Xo,o.
The difference, however, is not large and if the splitting
by stress is to be ascertained from the piezoelectric Ra-
man results, a careful fit to the experimental data with
the weights given by the calculation of Fig. 6 is needed.
The strain-induced conduction-band intervalley splitting
usually shifts the Q~~z component down and raises the
other two components, relative to the intrinsic splittings
of Fig. 4. In general, the electronic or phonon-energy

32shift due to a strain given by the tensor F is

along m (if transverse) with wave vector Q are defined in
terms of the frequency-shift squared b,co (Q,j,m) induced

2 ' 33by strain ek& to the unstrained frequency coo(Q, J) as

bra (Q,j,m) = —2coo(Q, j)g yk&(Q, j,m)ekt(cr ),
kl

(4.2)

where o is the magnitude of the stress, taken to be nega-
tive for a compressive stress. Thus, for TA(X) phonons
under [001] stress and for small frequency shifts b, ru, the
bc@ are given by

Aro= —choo (S»y»+2S, 2yz2) for Q~~ stress

and

(4.3a)

Since the "intravalley" splitting of TA(X) phonons, to be

0.010 - ---- L+ Ty
L+ T

0.005— Ixxxx

I

I

I

1

bru= —oooo [S»yzz+Siz(y»+yz2)] for QL stress .

(4.3b)
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FIG. 6. Same as Fig. 4 except the sample is under 24 kbar
[001] stress; this gives the added contributions of the stress-
induced intervalley splitting.

FIG. 7. Calculated spectra with sample under 24 kbar [001]
stress and the two contributions of the transverse-phonon polar-
izations separated in order to display intravalley splitting. The
dashed line gives the contributions of all longitudinal phonons
and those transverse phonons polarized perpendicular to the
stress, and the solid line gives the contributions of all longitudi-
nal phonons and those transverse phonons polarized parallel to
the stress. The phonon Q vector has been restricted to be ap-
proximately parallel to the x axis.
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FIG. 8. Calculated second-order Raman spectra of Si show-

ing the I„„component in the absence of stress for three
different laser frequencies. The relative amplitudes of the
2TO(8'), 2TO(L) and 2TO(I ) peaks vary with laser frequency
as different intermediate states become resonant.

discussed next, cannot be resolved in the experimental
data, we neglect the contributions of y23 which deter-
mines the magnitude of the splitting. The experimental
data indicate that the 2TA(X) peak in the I~~~~ spectrum
occurs at 301.48 cm ' under no stress, and at 300.18
cm ' under 24 kbar [001] stress. Also, this peak falls in
the I„„spectrum at 301.48 cm ' under no stress, and at
298.77 cm ' under stress. The resolution on the energy
scale is 1.3 cm '. The relative weights of Q~~ stress and
Ql stress can be determined from Figs. 4 and 6. Using
these to weight equations (4.3a) and (4.3b), we obtain
y & &

= —1.50 and yz2 = —0.33 for TA(X) phonons, and a
Griineisen parameter of y G

= (y»+2@22)/3 = —0.72.
More accurate determinations of these parameters using
neutron scattering give y & &

= —2.05+0. 19 and

y» = —1.59+0.24, ' and y G
= —1.74. The generally ac-

cepted value of yG for TA(X) phonons is —1.4. It is
probable that the low resolution of the Raman data is at
fault with the disagreement; however, higher resolution
data, combined with the calculated weights, should pro-
vide an alternative method for the accurate determina-
tion of mode Grueisen parameters.

Besides the intervalley splitting of Xoo& versus X&oo and
Xo&0, the strain also induces an intravalley splitting of the
directions ("valleys" ) X&oo and Xo&o. Each of them con-
tains transverse vibrations along and perpendicular to the
stress axis, degenerate for zero stress but split by the
stress. In Fig. 7 these intravalley splittings are presented.
Each curve in the figure includes the contributions of all
longitudinal phonons but only one polarization (perpen-
dicular or parallel to the stress) of the transverse pho-

nons, for the case of 24 kbar [001] stress and Q~~x. Since
it is often impossible to assign phonons to longitudinal or
transverse branches away from symmetry points, the re-
sults of Fig. 7 do not show a complete separation of the
two polarization directions of the transverse phonons, or
show equal contributions from the longitudinal branches.
In particular, it appears that the L + T (all longitudinal
and those transverse phonons polarized along y) curve
contains the contributions of too many T, phonons near
8'and thus the calculated difference between the L, + T
and I + T, spectra near 8'is too large. Nevertheless, the
calculations should help to provide an estimate of the in-
travalley splittings near X and I..

By inspection of the calculated Raman tensor for vari-
ous Q values, one can establish that resonant intermedi-
ate states dominate the transition amplitude. Resonant
intermediate states occur when, for example, the first-
energy denominator in (2.5b) becomes zero. The calcula-
tions show, in agreement with experiment, that the rel-
ative heights of the 2TO( W), 2TO(L), and 2TO(I ) peaks
vary with changing incident photon energies (Fig. 8).
Above the indirect gap, the 2TO( W) peak dominates, but
with increasing ficol the 2TO(L) peak starts to dominate
(at about ficol =2.2 eV) as resonant transitions become
possible to A states. Finally, near the direct gap, the
TO(I ) phonons produce a strongly resonant intermediate
state.

V. CONCLUSION

In summary, we have calculated the second-order
Raman-scattering efficiency for semiconductors under
uniaxial stress. The theory is valid for light frequencies
either on or oF resonance. Quantitative comparison with
experimental data for crystalline Si both unstressed (Fig.
2) and under [001] stress (Fig. 3) shows good agreement
both in the amplitude and the form of the scattering spec-
trum. The calculation allows one to separate out the con-
tributions of given phonons and phonon polarizations al-
lowing for the determination of intervalley and intraval-
ley splittings in the spectra.

The main source of errors in the numerical evaluation
is the large grid spacing employed in the Brillouin-zone
sums, which was not reduced because of the already
lengthy nature of the calculations. For this reason also,
the relaxation of the approximations made or the exten-
sion to third- or higher-order scattering would require
faster computing capabilities. Nevertheless, these micro-
scopic calculations demonstrate agreement with experi-
ment at a level comparable to that of phenomenological
theories.
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